Spatiotemporal data is readily available due to emerging sensor and data acquisition technologies that track the positions of moving objects of interest. Spatiotemporal clustering addresses the need to efficiently discover patterns and trends in moving object behavior without human supervision. One application of interest is the discovery of moving clusters, where clusters have a static identity, but their location and content can change over time. We propose a two phase spatiotemporal clustering method called spatiotemporal k-means (STKM) that is able to analyze the multi-scale relationships within spatiotemporal data. Phase 1 of STKM frames the moving cluster problem as the minimization of an objective function unified over space and time. It outputs the short-term associations between objects and is uniquely able to track dynamic cluster centers with minimal parameter tuning and without post-processing. Phase 2 outputs the long-term associations and can be applied to any method that provides a cluster label for each object at every point in time. We evaluate STKM against baseline methods on a recently developed benchmark dataset and show that STKM outperforms existing methods, particularly in the low-data domain, with significant performance improvements demonstrated for common evaluation metrics on the moving cluster problem.
translated by 谷歌翻译
子格式微型航空车(MAV)中的准确而敏捷的轨迹跟踪是具有挑战性的,因为机器人的小规模会引起大型模型不确定性,要求强大的反馈控制器,而快速的动力学和计算约束则阻止了计算上昂贵的策略的部署。在这项工作中,我们提出了一种在MIT SoftFly(一个子)MAV(0.7克)上进行敏捷和计算有效轨迹跟踪的方法。我们的策略采用了级联的控制方案,在该方案中,自适应态度控制器与受过训练的神经网络政策相结合,以模仿轨迹跟踪可靠的管模型模型预测控制器(RTMPC)。神经网络政策是使用我们最近的工作获得的,这使该政策能够保留RTMPC的稳健性,但以其计算成本的一小部分。我们通过实验评估我们的方法,即使在更具挑战性的操作中,达到均方根误差也低于1.8 cm,与我们先前的工作相比,最大位置误差减少了60%,并证明了对大型外部干扰的稳健性
translated by 谷歌翻译
在许多情况下,有必要通过观察时间序列监视复杂的系统,并确定何时发生异源事件,以便采取相关的动作。确定当前的观察是否异常是具有挑战性的。它需要从历史数据中学习动力学的外推性概率模型,并使用有限数量的当前观察结果来进行分类。我们利用长期概率预测的最新进展,即{\ em Deep概率Koopman},构建了一种在多维时序数据中对异常进行分类的通用方法。我们还展示了如何利用具有域知识的模型来减少I型和II型错误。我们展示了我们提出的关于全球大气污染监测的重要现实世界任务的方法,并将其与NASA的全球地球系统模型集成在一起。该系统成功地检测到由于COVID-19锁定和野火等事件而导致的空气质量异常情况。
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
数据驱动模型发现中的中央挑战是存在隐藏或潜伏的变量,这些变量不会直接测量,而是动态重要。 TAKENS的定理提供了在可能随时间延迟信息中增加这些部分测量的条件,导致吸引物,这是对原始全状态系统的扩散逻辑。然而,回到原始吸引子的坐标变换通常是未知的,并且学习嵌入空间中的动态仍然是几十年的开放挑战。在这里,我们设计自定义深度AutoEncoder网络,以学习从延迟嵌入空间的坐标转换到一个新的空间,其中可以以稀疏,封闭的形式表示动态。我们在Lorenz,R \“Ossler和Lotka-Volterra系统上,从单个测量变量的学习动态展示了这种方法。作为一个具有挑战性的例子,我们从混乱的水车视频中提取的单个标量变量中学到一个洛伦兹类似物得到的建模框架结合了深入的学习来揭示可解释建模的非线性动力学(SINDY)的揭示有效坐标和稀疏识别。因此,我们表明可以同时学习闭合模型和部分的坐标系观察到的动态。
translated by 谷歌翻译
自动化数据驱动的建模,直接发现系统的管理方程的过程越来越多地用于科学界。 Pysindy是一个Python包,提供用于应用非线性动力学(SINDY)方法的稀疏识别到数据驱动模型发现的工具。在Pysindy的这一主要更新中,我们实现了几种高级功能,使得能够从嘈杂和有限的数据中发现更一般的微分方程。延长候选术语库,用于识别致动系统,部分微分方程(PDE)和隐式差分方程。还实施了包括Sindy和合奏技术的整体形式的强大配方,以提高现实世界数据的性能。最后,我们提供了一系列新的优化算法,包括多元稀疏的回归技术和算法来强制执行和促进不等式约束和稳定性。这些更新在一起,可以在文献中尚未报告的全新SINDY模型发现能力,例如约束PDE识别和使用不同稀疏的回归优化器合并。
translated by 谷歌翻译
我们考虑从高噪声限制的时间序列数据中控制方程的数据驱动发现。该算法开发描述了在非线性动力学(SINDY)框架的稀疏识别的背景下避免噪声的广泛影响的方法的广泛工具包。我们提供了两个主要贡献,都集中在系统x'= f(x)中获取的嘈杂数据。首先,我们提出用于高噪声设置的广泛工具包,这是一个批判性的回归方法的扩展,从完整的库中逐步剔除剔除功能,并产生一组稀疏方程,其回归到衍生x' 。这些创新可以从高噪声时间序列数据中提取稀疏控制方程和系数(例如,增加噪声300%)。例如,它发现洛伦茨系统中的正确稀疏文库,中值系数估计误差等于1% - 3%(50%噪声),6% - 8%(100%噪声);和23% - 25%(噪音300%)。工具包中的启用模块组合成单个方法,但各个模块可以在其他方程发现方法(Sindy或不)中进行战术,以改善高噪声数据的结果。其次,我们提出了一种技术,适用于基于X'= F(X)的任何模型发现方法,以评估由于噪声数据而在非唯一解决方案的上下文中发现模型的准确性。目前,这种非唯一性可以模糊发现模型的准确性,从而造成发现方法的有效性。我们描述了一种使用线性依赖性的技术,该技术将发现的模型转换为最接近真实模型的等效形式,从而能够更准确地评估发现的模型的准确性。
translated by 谷歌翻译
各系列扩张是几个世纪以来的应用数学和工程的基石。在本文中,我们从现代机器学习角度重新审视了泰勒系列扩张。具体地,我们介绍了快速连续的卷积泰勒变换(FC2T2),这是快速多极法(FMM)的变型,其允许在连续空间中有效地逼近低维卷积操作者。我们建立在FMM上,这是一种近似算法,其降低了从O(nm)到o(n + m)的n身体问题的计算复杂度,并在例如,在例如,在例如,在例如,在ev中找到应用。粒子模拟。作为中间步骤,FMM为网格上的每个单元产生串联扩展,我们引入直接作用于该表示的算法。这些算法分析但大致计算了反向衰减算法的前向和后向通过所需的数量,因此可以在神经网络中用作(隐式)层。具体地,我们引入了一种根隐性层,其输出表面法线和对象距离以及输出给定3D姿势的辐射场的渲染的积分隐式层。在机器学习的背景下,可以理解为N $和M $的$和M $分别被理解为型号参数和模型评估的数量,这对于需要在计算机视觉和图形中普遍存在的重复函数评估的应用程序,与常规神经网络不同网络,该技术以参数优雅地介绍了本文。对于某些应用,这导致拖鞋的200倍减少,与最先进的方法以合理的或不存在的准确性损失相比。
translated by 谷歌翻译
时间序列数据的生成和分析与许多从经济学到流体力学的定量字段相关。在物理科学中,诸如亚稳态和连贯的组的结构,慢松弛过程,集体变量显性过渡途径或歧管流动流动的概率流动可能非常重视理解和表征系统的动力动力学和机械性质。 Deeptime是一种通用Python库,提供各种工具来估计基于时间序列数据的动态模型,包括传统的线性学习方法,例如马尔可夫状态模型(MSM),隐藏的马尔可夫模型和Koopman模型,以及内核和深度学习方法如vampnets和深msms。该库主要兼容Scikit-Searn,为这些不同的模型提供一系列估计器类,但与Scikit-Ge劳说相比,还提供了深度模型类,例如,在MSM的情况下,提供了多种分析方法来计算有趣的热力学,动力学和动态量,例如自由能,松弛时间和过渡路径。图书馆专为易于使用而设计,而且易于维护和可扩展的代码。在本文中,我们介绍了Deeptime软件的主要特征和结构。
translated by 谷歌翻译
Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear is a central challenge in modern dynamical systems. These transformations have the potential to enable prediction, estimation, and control of nonlinear systems using standard linear theory. The Koopman operator has emerged as a leading data-driven embedding, as eigenfunctions of this operator provide intrinsic coordinates that globally linearize the dynamics. However, identifying and representing these eigenfunctions has proven to be mathematically and computationally challenging. This work leverages the power of deep learning to discover representations of Koopman eigenfunctions from trajectory data of dynamical systems. Our network is parsimonious and interpretable by construction, embedding the dynamics on a low-dimensional manifold parameterized by these eigenfunctions. In particular, we identify nonlinear coordinates on which the dynamics are globally linear using a modified auto-encoder. We also generalize Koopman representations to include a ubiquitous class of systems that exhibit continuous spectra, ranging from the simple pendulum to nonlinear optics and broadband turbulence. Our framework parametrizes the continuous frequency using an auxiliary network, enabling a compact and efficient embedding, while connecting our models to half a century of asymptotics. In this way, we benefit from the power and generality of deep learning, while retaining the physical interpretability of Koopman embeddings.
translated by 谷歌翻译